Daniel MartÃnez Tibaduiza
Universidade Federal do Rio de Janeiro, Brazil
Title: On the frequency function for stronger squeezing degree and the exact algebraic solution for the quantum harmonic oscillator with variable frequency
Biography
Biography: Daniel MartÃnez Tibaduiza
Abstract
We obtained an exact algebraic solution for the quantum harmonic oscillator with variable frequency in a closed form. This allows us to implement a numerical calculation to study the dynamics of the system. It is shown that for any frequency function, the instantaneous state of the system is a squeezed one of the initial Hamiltonian. Once the final state is found, is mandatory to analyse the models that maximize the squeezing degree. We present a discussion by comparison of the Janszky-Adam scheme, where the frequency modulation accounts through sudden changes between two stable frequencies, and the parametric resonance model, where the frequency modulation accounts through a harmonic function. In such analyses new aspects of the problem are elucidated.